Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Adv Sci (Weinh) ; : e2301222, 2023 May 24.
Article in English | MEDLINE | ID: covidwho-20230806

ABSTRACT

Airborne SARS-CoV-2 virus surveillance faces challenges in complicated biomarker enrichment, interferences from various non-specific matters and extremely low viral load in the urban ambient air, leading to difficulties in detecting SARS-CoV-2 bioaerosols. This work reports a highly specific bioanalysis platform, with an exceptionally low limit-of-detection (≤1 copy m-3 ) and good analytical accordance with RT-qPCR, relying on surface-mediated electrochemical signaling and enzyme-assisted signal amplification, enabling gene and signal amplification for accurate identification and quantitation of low doses human coronavirus 229E (HCoV-229E) and SARS-CoV-2 viruses in urban ambient air. This work provides a laboratory test using cultivated coronavirus to simulate the airborne spread of SARS-CoV-2, and validate that the platform could reliably detect airborne coronavirus and reveal the transmission characteristics. This bioassay conducts the quantitation of real-world HCoV-229E and SARS-CoV-2 in airborne particulate matters collected from road-side and residential areas in Bern and Zurich (Switzerland) and Wuhan (China), with resultant concentrations verified by RT-qPCR.

2.
Int J Environ Res Public Health ; 20(3)2023 01 20.
Article in English | MEDLINE | ID: covidwho-2242954

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has been a global public health concern for almost three years, and the transmission characteristics vary among different virus variants. Previous studies have investigated the relationship between air pollutants and COVID-19 infection caused by the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, it is unclear whether individuals might be more susceptible to COVID-19 due to exposure to air pollutants, with the SARS-CoV-2 mutating faster and faster. This study aimed to explore the relationship between air pollutants and COVID-19 infection caused by three major SARS-CoV-2 strains (the original strain, Delta variant, and Omicron variant) in China. A generalized additive model was applied to investigate the associations of COVID-19 infection with six air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3). A positive correlation might be indicated between air pollutants (PM2.5, PM10, and NO2) and confirmed cases of COVID-19 caused by different SARS-CoV-2 strains. It also suggested that the mutant variants appear to be more closely associated with air pollutants than the original strain. This study could provide valuable insight into control strategies that limit the concentration of air pollutants at lower levels and would better control the spread of COVID-19 even as the virus continues to mutate.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , SARS-CoV-2 , COVID-19/epidemiology , Nitrogen Dioxide , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , China/epidemiology
3.
Environ Int ; 164: 107266, 2022 06.
Article in English | MEDLINE | ID: covidwho-1814397

ABSTRACT

Caused by the SARS-CoV-2 virus, Coronavirus disease 2019 (COVID-19) has been affecting the world since the end of 2019. While virus-laden particles have been commonly detected and studied in the aerosol samples from indoor healthcare settings, studies are scarce on air surveillance of the virus in outdoor non-healthcare environments, including the correlations between SARS-CoV-2 and other respiratory viruses, between viruses and environmental factors, and between viruses and human behavior changes due to the public health measures against COVID-19. Therefore, in this study, we collected airborne particulate matter (PM) samples from November 2019 to April 2020 in Bern, Lugano, and Zurich. Among 14 detected viruses, influenza A, HCoV-NL63, HCoV-HKU1, and HCoV-229E were abundant in air. SARS-CoV-2 and enterovirus were moderately common, while the remaining viruses occurred only in low concentrations. SARS-CoV-2 was detected in PM10 (PM below 10 µm) samples of Bern and Zurich, and PM2.5 (PM below 2.5 µm) samples of Bern which exhibited a concentration positively correlated with the local COVID-19 case number. The concentration was also correlated with the concentration of enterovirus which raised the concern of coinfection. The estimated COVID-19 infection risks of an hour exposure at these two sites were generally low but still cannot be neglected. Our study demonstrated the potential functionality of outdoor air surveillance of airborne respiratory viruses, especially at transportation hubs and traffic arteries.


Subject(s)
COVID-19 , Viruses , Aerosols , Cities , Humans , Pandemics , SARS-CoV-2 , Switzerland/epidemiology
4.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1712228

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Benzothiazoles , COVID-19/diagnosis , Diamines , Humans , Quinolines , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Environ Sci Technol ; 55(7): 4123-4133, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1392749

ABSTRACT

The Corona Virus Disease 2019 (COVID-19) is rapidly spreading throughout the world. Aerosol is a potential transmission route. We conducted the quantitative microbial risk assessment (QMRA) to evaluate the aerosol transmission risk by using the South China Seafood Market as an example. The key processes were integrated, including viral shedding, dispersion, deposition in air, biologic decay, lung deposition, and the infection risk based on the dose-response model. The available hospital bed for COVID-19 treatment per capita (1.17 × 10-3) in Wuhan was adopted as a reference for manageable risk. The median risk of a customer to acquire SARS-CoV-2 infection via the aerosol route after 1 h of exposure in the market with one infected shopkeeper was about 2.23 × 10-5 (95% confidence interval: 1.90 × 10-6 to 2.34 × 10-4). The upper bound could increase and become close to the manageable risk with multiple infected shopkeepers. More detailed risk assessment should be conducted in poorly ventilated markets with multiple infected cases. The uncertainties were mainly due to the limited information on the dose-response relation and the viral shedding which need further studies. The risk rapidly decreased outside the market due to the dilution by ambient air and became below 10-6 at 5 m away from the exit.


Subject(s)
COVID-19 Drug Treatment , Aerosols , China/epidemiology , Humans , Risk Assessment , SARS-CoV-2 , Seafood
6.
Int J Environ Res Public Health ; 18(1)2020 12 28.
Article in English | MEDLINE | ID: covidwho-1006961

ABSTRACT

The COVID-19 pandemic imposes new challenges on the capability of governments in intervening with the information dissemination and reducing the risk of infection outbreak. To reveal the complexity behind government intervention decision, we build a bi-layer network diffusion model for the information-disease dynamics that were intervened in and conduct a full space simulation to illustrate the trade-off faced by governments between information disclosing and blocking. The simulation results show that governments prioritize the accuracy of disclosed information over the disclosing speed when there is a high-level medical recognition of the virus and a high public health awareness, while, for the opposite situation, more strict information blocking is preferred. Furthermore, an unaccountable government tends to delay disclosing, a risk-averse government prefers a total blocking, and a low government credibility will discount the effect of information disclosing and aggravate the situation. These findings suggest that information intervention is indispensable for containing the outbreak of infectious disease, but its effectiveness depends on a complicated way on both external social/epidemic factors and the governments' internal preferences and governance capability, for which more thorough investigations are needed in the future.


Subject(s)
COVID-19 , Government , Information Dissemination/methods , Pandemics , Decision Making , Humans , Models, Theoretical , Pandemics/prevention & control , Systems Analysis
7.
International Journal of Environmental Research and Public Health ; 18(1):147, 2021.
Article in English | ScienceDirect | ID: covidwho-984535

ABSTRACT

The COVID-19 pandemic imposes new challenges on the capability of governments in intervening with the information dissemination and reducing the risk of infection outbreak. To reveal the complexity behind government intervention decision, we build a bi-layer network diffusion model for the information-disease dynamics that were intervened in and conduct a full space simulation to illustrate the trade-off faced by governments between information disclosing and blocking. The simulation results show that governments prioritize the accuracy of disclosed information over the disclosing speed when there is a high-level medical recognition of the virus and a high public health awareness, while, for the opposite situation, more strict information blocking is preferred. Furthermore, an unaccountable government tends to delay disclosing, a risk-averse government prefers a total blocking, and a low government credibility will discount the effect of information disclosing and aggravate the situation. These findings suggest that information intervention is indispensable for containing the outbreak of infectious disease, but its effectiveness depends on a complicated way on both external social/epidemic factors and the governments’internal preferences and governance capability, for which more thorough investigations are needed in the future.

8.
Cities ; 107: 102869, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-693589

ABSTRACT

The special epistemic characteristics of the COVID-19, such as the long incubation period and the infection through asymptomatic cases, put severe challenge to the containment of its outbreak. By the end of March 2020, China has successfully controlled the within- spreading of COVID-19 at a high cost of locking down most of its major cities, including the epicenter, Wuhan. Since the low accuracy of outbreak data before the mid of Feb. 2020 forms a major technical concern on those studies based on statistic inference from the early outbreak. We apply the supervised learning techniques to identify and train NP-Net-SIR model which turns out robust under poor data quality condition. By the trained model parameters, we analyze the connection between population flow and the cross-regional infection connection strength, based on which a set of counterfactual analysis is carried out to study the necessity of lock-down and substitutability between lock-down and the other containment measures. Our findings support the existence of non-lock-down-typed measures that can reach the same containment consequence as the lock-down, and provide useful guideline for the design of a more flexible containment strategy.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.05.137380

ABSTRACT

ObjectivePrevious study indicated that bladder cells which express ACE2 were a potential infection route of 2019-nCov. This study observed some differences of bladder cell cluster and their ACE2 expression between OAB mice and healthy mice, indicating the change of infectious possibility and pathway under overactive bladder (OAB) circumstance. Material and methodPubic dataset acquisition was used to get ACE2 expression in normal human bladder and mice bladder (GSE129845). We built up over OAB model and studied the impact on cell typing and ACE2 expression. By way of using single-cell RNA sequencing (scRNA-seq) technique, bladder cell clustering and ACE2 expression in various cell types were measured respectively. ResultIn pubic database (healthy human and mice bladder), ACE2 expression in humans and mice is concentrated in bladder epithelial cells. The disappearance of umbrella cells, a component of bladder epithelial, was found in our OAB model. In the two mouse bladder samples, ACE2 expression of epithelial cells is 34.1%, also the highest of all cell types. ConclusionThe disappearance of umbrella cell may alternate the infection pathway of 2019-nCov and relate to the onset and progression of OAB.


Subject(s)
Urinary Bladder Diseases , Urinary Bladder, Overactive
SELECTION OF CITATIONS
SEARCH DETAIL